向右滑动:上一篇 向左滑动:下一篇 我知道了

英特尔开展基于毫米波传输技术的5G研究

在成功主导将60GHz 导入局域网络(LAN)后,英特尔(Intel)正推动一项研究,以定义在下一代蜂窝系统中采用毫米波无线频段的提案。该技术将在扩展蜂窝式基础架构方面扮演一项非常重要的角色,但它并不会像 WiGig 扩展 Wi-Fi 后彼此合并的方式一样进行取代构……

在成功主导将60GHz 导入局域网络(LAN)后,英特尔(Intel)正推动一项研究,以定义在下一代蜂窝系统中采用毫米波无线频段的提案。 该技术将在扩展蜂窝式基础架构方面扮演一项非常重要的角色,但它并不会像 WiGig 扩展 Wi-Fi 后彼此合并的方式一样进行取代构,英特尔移动与无线部门资深总监Ali Sadri表示。 Sadri曾经主导一项专为 60GHz LAN定义有关规格的 WiGig 计划,该规格已成为目前 IEEE 802.11ad 的标准基础,而 WiGig 部门也已在去年与 Wi-Fi 联盟整合了。 Sandri 的团队现正致力于一项以 60GHz 作为小型蜂窝基站回程网络的技术展示,预计将在今年二月举行的全球移动通讯大会(MWC)上发布。该团队同时也研究以28GHz与39GHz技术作为 行动装置接取链路的可能性,瞄准在至少200公尺的距离内达到1Gb/s或更高的吞吐量。“我们的目标是在2016-2017年时开发出新的媒体访问控制器与物理层芯片,我们同时也展开一项可让业界于2020年发布的计划。” 除了英特尔以外,业界还有越来越多的公司均认为5G蜂窝系统必须采用毫米波频谱,才能满足不断增加的用户使用更多行动数据的需求。去年年底,欧盟委员会(EC)启动了一项18亿美元的 5G 研究计划,其中就包括了针对毫米波无线技术的研究。在亚洲所举办的一些论坛也正推动类似的目标。 尽管所能传输的范围较小,但更高的频段确保能有更多频谱以及更快的数据吞吐量。不过,它也带来了技术与监管方面的挑战。 为了积极推动这项计划,Sandri已在CES期间与美国联邦通信委员会(FCC)主管晤谈了。“我们目前还在教育推广阶段,还必须完成许多的研究、共享模拟以及测试部署等。因此,在FCC考虑改变现行规则以开启毫米波频谱以前,还有好几年的时间。” 英特尔正与欧洲两大联盟以及三星(Samsung)等厂商合作,共同开发5G毫米波频谱计划。该公司还在中国与韩国等地追踪有关 5G 的最新发展。Sandri表示,“这是一项巨大的工程,它将是迄今为止最广泛与复杂的无线计划了。” 28GHz vs. 39GHz 至于究竟应该采用28GHz还是39GHz频段来连接移动装置至5G网络?目前已经出现不同的争论了。“三星对于28GHz十分有兴趣,而且也已经为其投入 许多时间了;但从法规的观点来看,39GHz更适于修订现有规则,”Sandri表示,这是因为卫星服务使用了一部份的28GHz频段。相反 地,39GHz显然还有超过1GHz以上的带宽可用。 在技术方面,系统通常会为天线预留10cm2的固定空间。由于39GHz频段可实现更小的天线,因而在其天线空间中所能装载的天线数量较采用28GHz链路时更多——由于该技术可能需要采用具波束成形的相位数组天线,因此这个因素也相当重要。 此外,Sandri估计,相较于采用60GHz频段,39GHz可提供约3-5dB的讯号改善,而28GHz频段仅较39GHz时的讯号改善1.5dB。 未来的研究将更进一步研究该技术的折衷细节。工程师们也将在这些挑战中探索其他可行的技术方案,如高频漫游、连结毫米波与传统服务,以及解决都会区高楼大厦林立可能妨碍高频讯号接取的问题。 本文授权编译自EE Times,版权所有,谢绝转载 编译:Susan Hong 参考英文原文:Intel Surfs Millimeter Waves to 5G,by Rick Merritt

相关阅读:
博通针对家庭应用推出增强型5G Wi-Fi视频流传输系统
欧洲正式展开5G网络计划
高层视点:2014年电子行业值得关注的增长点l7desmc

{pagination} Intel Surfs Millimeter Waves to 5G Rick Merritt SAN JOSE, Calif. — After leading a successful charge to bring 60 GHz to wireless LANs, an Intel executive is driving research to define a proposal for using millimeter wave wireless in next-generation cellular systems. The technology "will play a very serious role as an augmentation of the cellular infrastructure, but it won't replace it in the same way that WiGig augments WiFi," Ali Sadri, a senior director of millimeter wave standards in Intel's mobile and wireless group, told us. Sadri led the WiGig effort that defined a specification for 60 GHz as a local-area network. The spec became the basis for today's IEEE 802.11ad standard, and the WiGig group was folded into the WiFi Alliance last year. Sadri's team is now working on a tech demo of 60 GHz as a backhaul link for so-called small cell base stations that could be shown at the Mobile World Congress in February. The team is also researching 28 GHz and 39 GHz as access links to mobile devices, targeting a throughput of 1 Gbit/s or more at distances of at least 200 meters. "Our target is to start working on new media access controller and physical layer chips in 2016-2017, and we are also shooting for a project the industry can launch in 2020." Intel is among the growing ranks of companies that say 5G cellular systems will need to use millimeter wave links to meet rising numbers of subscribers using more mobile data. Late last year, the European Commission kicked off a $1.8 billion 5G research effort that includes plans for millimeter wave research. Forums in Asia are pursuing similar goals. The higher frequencies promise more spectrum and faster data throughput, though at shorter ranges. They also pose significant technical and regulatory challenges. As part of his efforts, Sadri went to CES to have dinner with Federal Communications Commission officials. "We're at the educational level. A lot of study has to be done, shared simulations and test deployments, so it will be a couple years before the FCC can consider rule changes" to open up millimeter wave spectrum. Intel is working with two consortia in Europe and has collaborated with Samsung and others on 5G millimeter projects. It is also tracking 5G efforts in places like China and Korea. "It's a huge project. It will be by far one of the most extensive and complex project in wireless to date." A debate already is emerging about the use of 28 GHz and 39 GHz bands for linking mobile devices to 5G networks. "Samsung very interested in 28 GHz and has spent considerable time on that, but from a regulatory point of view, 39 GHz is more suitable for rule modification," Sadri said. That's because satellite services use portions of the 28 GHz band. By contrast, 39 GHz has significantly more than 1 GHz available for use. On the technology front, systems typically have a fixed space of about 10 cm2 for an antenna. The 39 GHz band allows smaller antennas and thus could pack more of them into that space than a 28 GHz link -- an important factor given phased-array antennas with beam forming are a likely requirement. In addition, Sadri estimates 39 GHz offers 3-5 dB signal improvement over 60 GHz. The 28 GHz band offers a benefit of only about 1.5 dB over 39 GHz. Future research will explore such tradeoffs in more detail. Engineers will also explore techniques to work around challenges such as roaming at the high frequencies, linking millimeter and traditional services, and handling reach issues in urban areas where skyscrapers would block high-frequency signals.
责编:Quentin
本文为国际电子商情原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Rick Merritt
EE Times硅谷采访中心主任。Rick的工作地点位于圣何塞,他为EE Times撰写有关电子行业和工程专业的新闻和分析。 他关注Android,物联网,无线/网络和医疗设计行业。 他于1992年加入EE Times,担任香港记者,并担任EE Times和OEM Magazine的主编。
  • 微信扫一扫,一键转发

  • 关注“国际电子商情” 微信公众号

推荐文章

可能感兴趣的话题