据了解,为了利用基于无机物的Micro LED制作显示器,需将每种光色(红光、蓝光和绿光)的芯片从各自基板上分离出来,并将它们转移到显示面板上。EU9esmc
过往,常用的转移方法是通过Pick-and-Place取放方案将每个芯片移动至显示面板,然而随着芯片尺寸不断缩小,这种转移良率将会降低,因此难以应用于超高分辨率显示器的生产。EU9esmc
为了解决这个问题,KAIST的研究团队在Si-CMOS显示驱动电路板上,通过3D堆叠方式集成红色Micro LED。该方法首先通过晶圆键合将Micro LED薄膜层转移到Si-CMOS电路板上,然后通过光刻工艺生成像素。之后,研究团队通过从上到下(Top-down)的连续半导体工艺,在Si-CMOS电路板上成功开发了高分辨率显示器。EU9esmc
在此过程中,研究团队通过设计一种用于显示的LED半导体层,将用于发光的有源层的厚度减少到现有的三分之一,减少像素形成所需的蚀刻工艺的难度,从而取得本次研究的成果。EU9esmc
此外,为防止下层显示驱动电路性能下降,研究团队采用晶圆键合等超低温工艺,在350度以下集成上层III-V族元素,保持下层驱动IC在上层元件被整合之后,性能保持不变。EU9esmc
据悉,本研究成果是一项以三维堆叠方式集成红色Micro LED,成功实现1600PPI的世界级分辨率的研究,研究运用的单片式3D集聚方式,为下一代超高分辨率显示的开发提供了指导方向。Sang-Hyun Kim教授认为,未来可以通过应用类似的工艺来制造包红、绿、蓝光的全彩显示器。值得注意的是,本次研究获得了三星未来技术开发中心的支持。EU9esmc
责编:Momoz