分析半导体掺杂的技术多种多样,例如:xhPesmc
■ 扫描式电容显微镜(SCM ),我们经常将它包含在我们的功耗报告中,这为我们提供了大面积的相对掺杂物分析。xhPesmc
■ 扫描式电阻测定(SRP)和二次离子质谱(SIMS)可以给出定量分析,但是尺寸有限。宽度小于1μm的掺杂浓度的绝对值很难辨别。xhPesmc
■ 原子探针层析成像(APT)是一种非常适合小面积分析的技术,它允许在原子尺度上进行三维成像以及化学成分分析。它可以给出关于同时存在的离子的深度剖面和质谱的生动剖析。xhPesmc
APT功率xhPesmc
APT的工作原理是将场蒸发(FE)原理与飞行时间质谱(TOF-MS)相结合。离子到达检测器的顺序和它们的(x,y)坐标已知的情况下,可以应用简单的基于几何投影的算法来最终实现样本的3D重建。APT可能提供介于0.25-1.25nm的高空间分辨率,具体取决于所分析的材料。xhPesmc
同预测一样,APT的灵敏度只受计数统计的限制,如果探测足够大的体积,灵敏度可以达到10原子ppm。因此,APT是一种强大的3D元素绘图技术,有可能产生接近原子级的分辨率和接近单个原子的检测效率。xhPesmc
TechInsights的UnitedSiC第四代SiC JFETs库中已经收集了大量分析:而这些分析内容可以在我们的订阅中的SiC电源电路布局报告、电源要点摘要和工艺流程分析里找到。该产品还是前一篇博客的主题,也是关于讨论SiC产品电气特性测试超过规格书的参数范围的博客系列的一部分。目前,TechInsights和加拿大安大略省麦克马斯特大学加拿大电子显微镜中心(CCEM)的同事们合作,以开展更深入的分析。xhPesmc
CCEM拥有各种最先进的电子和离子显微镜,以及CAMECA局部电极原子探针(LEAP)4000X HR。这些仪表有助于研究各种材料的纳米特性和现象,包括金属、合金、半导体、陶瓷、矿物甚至生物材料。xhPesmc
特别是对于半导体器件的分析,除了元素的定量3D映射和各种层/界面的可视化之外,APT数据还可以揭示有趣的细节,例如掺杂剂对缺陷的分离、纳米尺度特征和界面的浓度分布、局部成分等。反过来,这些信息可以提供对器件性能/故障及其制造工艺的宝贵分析。xhPesmc
目标分析器件 - UnitedSiC第四代SiC JFETxhPesmc
UnitedSiC UJ4C075018K4S的额定电压为750 V,导通电阻(RDS.(ON))为18mΩ。xhPesmc
与UnitedSiC第三代产品的3.03 mΩ.cm2相比,这些技术进步带来了更低的1.32 mΩ.cm2的导通电阻(RDS.ON(SP))。这不仅低于UnitedSiC的上一代产品,也低于我们迄今为止观察到的任何650 V SiC MOSFET。(还要注意,这实际上是一个750V的设备)xhPesmc
从过去的经验来看,在SiC中的p-type掺杂比例研究一直是具有挑战性的。铝(Al)是最佳的候选受体,但是注入Al的4H-SiC在1400℃退火时电激活率小于10%,需要1600℃退火才能接近100%激活。xhPesmc
与p-type掺杂比例相关的挑战和相关问题,例如来自注入的寿命致命缺陷和来自高温退火的晶格畸变,这就是我们至今仍未见到商业上可用的双极型功率半导体器件(例如SiC中的IGBTs)的重要原因。xhPesmc
UJ4C075018K4S装置的APTxhPesmc
实现FE所需的表面电场的幅度可以高达数十 V/nm,这在实验室设置中几乎不可能实现。为了解决这个问题,APT样品基本上被制备成针状体的形式,其顶点直径为50-100纳米量级,这样一些kV的应用就可以产生所需的表面电场大小。因此,APT样品制备是一个重要的过程,需要专用仪器。使用高度聚焦的高能离子束(通常是镓或氙)实现关注区域(ROI)的目标提升和成形,同时使用扫描电子束使其成像。xhPesmc
当前研究的目标是量化SiC JFET沟道中的p型掺杂剂,并且显现其在沟道中的3D分布。两次成功的APT实验分别收集了3400万和3700万个离子。确认p型掺杂剂是Al。在解决质量峰重叠后,可以在合理的误差范围内对每个样品中的Al含量进行定量,并得出1e-19 atoms/cm3的平均值(表1)。同一个表中还显示了每次实验测定的Si、C和Al含量。xhPesmc
值得注意的是,APT重构揭示了Al在栅极区域内的极不均匀分布,这表明它与SiC中的晶体缺陷分离。这些缺陷可能是离子注入工艺的结果,每个这样的簇中的Al原子的数量包含大约1000个Al原子。正如人们所预料的,这种设备通道内的局部和随机不均匀组合不可取,因为它们可能增加设备性能的可变性,并最终降低可靠性。xhPesmc
总结xhPesmc
这项工作证明,APT可以用于从半导体器件中获得高度局域化的信息。未来,TechInsights希望扩展我们的分析,以研究沿侧壁的掺杂剂分布、SiC/SiO界面的质量和Ni硅化物门内部的局部成分变化。xhPesmc
作者:xhPesmc
Stephen Russell (TechInsights Sr. Process Analyst_Power Devices)xhPesmc
合著作者:xhPesmc
Ramya Cuduvally(CCEM和麦克马斯特大学材料科学与工程学院)xhPesmc
Brian Langelier(CCEM和麦克马斯特大学材料科学与工程学院)xhPesmc
责编:Elaine