从很多方面来看,AI加速热潮与1990年代末期和2000年代初的DSP淘金热很类似......与DSP协同处理器一样,AI加速器的目标是找到最快速、最节能的方法来执行所需的运算任务...
从云端的大数据(big data)处理到边缘端的关键字识别和影像分析,人工智慧(AI)应用的爆炸式成长促使专家们前仆后继地开发最佳架构,以加速机器学习(ML)演算法的处理。各式各样的新兴解决方案都凸显了设计人员在选择硬体平台之前,明确定义应用及其需求的重要性。g5zesmc
从很多方面来看,AI加速热潮与1990年代末期和2000年代初的DSP淘金热很类似;在那个时候,随着有线和无线通讯起飞,市场上纷纷推出高性能DSP协同处理器(co-processor )以因应基频处理的挑战。与DSP协同处理器一样,AI加速器的目标是找到最快速、最节能的方法来执行所需的运算任务。g5zesmc
神经网路处理背后的数学,涉及统计学、多元微积分(multivariable calculus)、线性代数、数值最佳化(numerical optimization)和机率等;虽然很复杂,也是高度可平行化的(parallelizable)。但事实上这是令人尴尬的可平行化──与分散式运算不同,在路径的输出被重组并产生输出结果之前,很容易被分解为没有分支(branches)或从属关系(dependencies)的平行路径。g5zesmc
在各种神经网路演算法中,卷积神经网路(CNN)特别擅长物件识别类任务——也就是从影像中过滤筛选出感兴趣的物件。CNN以多维矩阵(multidimensional matrices)──即张量(tensor)──架构来理解资料,将超出第三个维度的每个维度都嵌入到子阵列中(如图1),每个添加的维度称为「阶」(order),因此,五阶张量会有五个维度。g5zesmc
g5zesmc
图1:CNN以张量架构摄取资料,也就是可被视觉化为3D立方体的数字矩阵(资料集);每个阵列中还有一个子阵列,该数字定义了CNN的深度。
(图片来源:Skymind)g5zesmc
这种多维分层对于理解CNN所需之加速的本质很重要,卷积过程使用乘法在数学上将两个函数「卷绕」(roll)在一起,因此广泛使用乘加(multiply-accumulate,MAC )数学运算;举例来说,在物件识别中,一个函数是源影像,另一个函数是用来识别特征然后将其映射到特征空间的筛检程式(filter)。每个筛检程式都要多次执行这种「卷绕」,以识别影像中的不同特征,因此数学运算变得非常重复,且是令人尴尬(或令人愉悦)的可平行化。g5zesmc
为此,某些AI加速器的设计采用多个独立的处理器核心(高达数百或上千个),与记忆体子系统一起整合在单晶片中,以减轻资料存取延迟并降低功耗。然而,由于业界已设计了绘图处理器(GPU)来对影像处理功能进行高度平行处理,因此它们对于AI所需的这种神经网路处理也可以实现很好的加速。AI应用的多样性和深度,特别是在语音控制、机器人、自动驾驶和大数据分析等方面,已经吸引了GPU供应商将重点转移到AI处理硬体加速的开发。g5zesmc
然而AI硬体加速的问题,在于有如此多的资料,所需的准确性和回应时间又有如此大的差别,设计人员必须对于架构的选择非常讲究。例如资料中心是资料密集型的,其重点是尽可能快速处理资料,因此功耗并非特别敏感的因素——尽管能源效率有利于延长设备使用寿命,降低设施的整体能耗和冷却成本,这是合理的考量。百度的昆仑(Kunlun)处理器耗电量为100W,但运算性能达到260 TOPS,就是一款特别适合资料中心应用的处理器。g5zesmc
接下来看另一个极端的案例。如关键字语音辨识这样的任务需要与云端连结,以使用自然语言识别来执行进一步的命令。现在这种任务在采用法国业者GreenWaves Technologies之GAP8处理器的电池供电边缘装置上就可以实现;该处理器是专为边缘应用设计,强调超低功耗。g5zesmc
介于中间的应用,如自动驾驶车辆中的摄影机,则需要尽可能接近即时反应,以识别交通号志、其他车辆或行人,同时仍需要最小化功耗,特别是对于电动车来说;这种情况或许需要选择第三种方案。云端连结在此类应用中也很重要,如此才能即时更新所使用的模型和软体,以确保持续提高准确度、反应时间和效率。g5zesmc
正因为这是一个在软、硬体方面都迅速发展,需要在技术上持续更新的领域,并不建议将AI神经网路(NN)加速器整合到ASIC或是系统级封装(SiP)中——尽管这样的整合具有低功耗、占用空间小、成本低(大量时)和记忆体存取速度快等优点。加速器、模型和神经网路演算法的变动太大,其灵活性远超过指令导向(instruction-driven)方法,只有像Nvidia这种拥有先进技术、资金雄厚的玩家才能够负担得起不断在硬体,而在硬体上根据特定方法进行反覆运算。g5zesmc
这种硬体加速器开发工作的一个很好的例子,就是Nvidia在其Tesla V100 GPU中增加了640个Tensor核心,每个核心在一个时脉周期内可以执行64次浮点(FP)融合乘加(fused-multiply-add,FMA)运算,可为训练和推理应用提供125 TFLOPS的运算性能。借助该架构,开发人员可以使用FP16和FP32累加的混合精度(mixed precision)进行深度学习训练,运算速度比Nvidia自家上一代Pascal架构高3倍。g5zesmc
混合精度方法很重要,因为长期以来人们已经认识到,虽然高性能运算(HPC)需要使用32~256位元FP的精确运算,但深度神经网路(DNN)不需要这么高的精度;这是因为经常用于训练DNN的反向传播演算法(back-propagation algorithm)对误差具有很强的弹性,因此16位元半精度(FP16)对神经网路训练就足够了。g5zesmc
此外,储存FP16资料比储存FP32或FP64资料的记忆体效率更高,从而可以训练和部署更多的网路,而且对许多网路来说,8位元整数运算(integer computation)就足够了,对准确性不会有太大影响。g5zesmc
这种使用混合精度运算的能力在边缘甚至会更实用,当资料登录的来源是低精度、低动态范围的感测器——例如温度感测器、MEMS惯性感测器(IMU)和压力感测器等——还有低解析度视讯时,开发人员可以折衷精度以取得低功耗。g5zesmc
可扩充处理(scalable processing)的概念已经扩展到更广泛的网路——利用雾运算(fog computing)概念,透过在网路上的最佳位置执行所需的处理,来弥补边缘和云端之间的能力差距;例如可以在本地物联网(IoT)闸道器或更接近应用现场的本地端伺服器上进行神经网路影像处理,而不必在云端进行。这样做有三个明显的优势:一是能减少由于网路延迟造成的时延,二来可以更安全,此外还能为必须在云端处理的资料释出可用的网路频宽;在更高的层面上,这种方法也通常更节能。g5zesmc
因此,许多设计师正在开发内建摄影机、影像预处理和神经网路AI讯号链(signal chains)功能的独立产品,这些产品仅在相对较闭回路(closed-loop)的运作中呈现输出,例如已识别标志(自驾车)或人脸(家用保全系统)。在更极端的案例中,例如设置在偏远或难以到达之处,以电池或太阳能供电的装置,可能需要长时间地进行这种处理。g5zesmc
g5zesmc
图2:GreenWave的GAP8采用9个RISC-V处理器核心,针对网路边缘智慧装置上的低功耗AI处理进行了最佳化。
(图片来源:GreenWaves Technologies)g5zesmc
为了帮助降低这种边缘AI影像处理的功耗,GreenWaves Technologies的GAP8处理器整合了9个RISC-V核心;其中一个核心负责硬体和I/O控制功能,其余8个核心则围绕共用资料和指令记忆体形成一个丛集(如图2)。这种结构形成了CNN推理引擎加速器,具备额外的RISC-V ISA指令来强化DSP类型的运算。g5zesmc
GAP8是为网路边缘的智慧装置量身打造,在功耗仅几十毫瓦(mW)的情况下可实现8GOPS运算,或者在1mW时可实现200 MOPS运算;它完全可以用C/C++语言来编程,最小待机电流为70nA。g5zesmc
RISC-V开放性硬体架构在一开始遭到质疑,因为那需要一个忠实稳固的使用者社群,以提供一系列丰富的支援工具和软体;而随着该架构透过各种测试晶片和硬体实作吸引更多开发者加入,那些质疑也逐渐消退。RISC-V吸引人之处在于它正成为Arm处理器的强劲对手,特别是在超低功耗、低成本应用上;只要谈到低成本就会锱铢必较,因此免费方案总是会感觉比需要支付授权费的方案更好。g5zesmc
不过虽然RISC-V架构的GAP8可以节能并且针对边缘神经网路处理进行了高度最佳化,从系统开发的角度来看仍然需要考虑周边功能,例如摄影机感测器本身和网路通讯介面,以及是采用有线还是无线技术等;依据系统通讯和处理影像的次数频率,这些功能占用的功耗比例可能较高。根据GreenWaves的说法,GAP8若采用3.6Wh的电池供电,能以每3分钟分类一张QVGA影像的频率持续工作长达10年;但该数字并未考量整体系统中其他因素的影响。g5zesmc
GreenWaves将其GAP8处理器与采用Arm Cortex-M7核心、运作频率216MHz的意法半导体(ST)处理器STM32 F7进行了直接比较(图3);两者以CIFAR-10资料集的影像进行训练,权重量化为8位元定点(fixed point)。g5zesmc
g5zesmc
图3:GreenWaves Technologies的GAP8与ST的STM32 F7处理器性能比较。
(图片来源:GreenWaves Technologies)g5zesmc
虽然GAP8因为拥有八核心架构而呈现更高效率,并能以较低时脉速率与更少的周期实现推理,Arm架构也不遑多让──Arm已经发表了针对行动装置和其他相邻、网路边缘应用的机器学习(ML)处理器,其应用场景包括AR/VR、医疗、消费性电子产品以及无人机等;该架构采用固定功能引擎(fixed-function engines)来执行CNN层,并采用可程式化层(programmable layer)引擎来执行非卷积层以及实现所选基元(primitive)和运算子(operator),参考图4。g5zesmc
g5zesmc
图4:Arm的ML处理器设计用于CNN类型固定功能以及可程式化层引擎的低功耗边缘处理。
(图片来源:Arm)g5zesmc
有趣的是,ML处理器是以高度可扩充架构为基础,因此同一处理器和工具可用于开发从物联网到、嵌入式工业和交通,到网路处理和伺服器等各种应用,运算性能要求从20 MOPS到70 TOPS以上不等。g5zesmc
如果开发团队希望从云端往下扩充,或从边缘往上扩充,那么这种可扩充性比较适合之前讨论的雾运算概念。此外该处理器本身与主流神经网路学习框架紧密整合,例如Google的TensorFlow和TensorFlow Lite,以及Caffe和Caffe 2;它还针对Arm Cortex CPU和Arm Mali GPU进行了最佳化。g5zesmc
透过ML处理器,Arm还强调了异质(heterogenous)方法对AI应用之神经网路的重要性,但仅限于其CPU和GPU的狭窄范围内。从更广泛的角度来看,英特尔(Intel)的OpenVINO (Visual Inference & Neural Network Optimization,视觉推理和神经网路最佳化)工具套件可以实现异质混合架构的开发,包括CPU、GPU与FPGA,当然还有英特尔自家的Movidius视觉处理器(VPU)和基于Atom的影像处理器(IPU)。利用通用API以及针对OpenCV和OpenVX最佳化的呼叫(call),英特尔声称其深度学习性能可以提高19倍。g5zesmc
异质方法对于针对AI的神经网路处理既有好处又不可或缺...g5zesmc
微信扫一扫,一键转发
关注“国际电子商情” 微信公众号
国际电子商情23日讯 据外媒报道,芯片制造业务面临巨额亏损,迫使英特尔暂停在法国和意大利的芯片厂投资计划。
2020年10月,英伟达将基于Mellanox的智能网卡(SmartNIC)方案命名为数据处理单元(Data Processing Units, DPU),并将CPU、GPU、DPU称之为组成“未来计算的三大支柱”。
国际电子商情12日讯 日本软银集团以未公开的金额收购了人工智能芯片制造商 Graphcore,结束了人们对该公司未来的长期猜测。
国际电子商情2日讯 据外媒报道,美国拜登政府正在启动一项培养美国计算机芯片劳动力的计划。
欧盟大力投资以RISC-V开源架构实现芯片独立的倡议。这项工作由巴塞罗那超级计算中心牵头,该中心在RISC-V技术的开发方面一直走在前列。
国际电子商情17日讯 据外媒报道,芯片巨头英特尔公司目前正面临一场集体诉讼。原告方指控英特尔在2023年的业绩报告中未正确披露其晶圆代工部门的巨额亏损情况。
国际电子商情12日讯 美国芯片制造商英特尔公司已决定停止在以色列扩建其价值250亿美元的芯片工厂,也通知供应商取消了为新工厂提供设备和材料的合同。
要观察消费电子市场的兴衰,最该在意的无疑一是手机,一是PC。过去一季常听行业谈起市场要恢复,这个话题有没有说服力,主要就看手机和PC市场有没有恢复了。
随着物联网设备的快速增长和智能化水平的提高,微控制器(MCU)作为智能设备的核心部件,正面临着前所未有的发展机遇。
我们一直都很好奇,MCU作为一种对实时性有要求的控制器,是如何实现边缘AI处理工作的。所以这篇文章,我们期望借着RA8来谈谈Arm Helium技术。
国际电子商情11日讯 近日,有消息称,日本软银或在洽谈收购英国芯片设计公司Graphcore…
国际电子商情9日讯 据拆解机构调查发现,华为 (Huawei) 最新发布手机配备更多的中国供应商组件,包括一款新的闪存芯片和一款改进的芯片处理器,这表明中国在技术自给自足方面正在取得进展。
在各大半导体厂商抢攻AI商机之际,芯片产能却赶不上需求。
TrendForce集邦咨询预估AI服务器第2季出货量将季增近20%,全年出货量上修至167万台,年增率达41.5%。
根据TrendForce集邦咨询最新存储器产业分析报告,受惠于位元需求成长、供需结构改善拉升价格,加上HBM(高带宽内
根据TrendForce集邦咨询最新存储器产业分析报告,受惠于位元需求成长、供需结构改善拉升价格,加上HBM(高带宽内
近日,中国科学院上海微系统与信息技术研究所宋志棠、雷宇研究团队,在三维相变存储器(3D PCM)亚阈值读取电路、高
7月21日,TCL电子公布2024年上半年全球出货量数据,TCL电子表示,得益于公司在全球市场的积极开拓和品牌影响力的
据美国趣味科学网站16日报道,来自美国麻省理工学院、美国陆军作战能力发展司令部(DEVCOM)陆军研究实验室和加拿
全球LED市场复苏,车用照明与显示、照明、LED显示屏及不可见光LED等市场需求有机会逐步回温,亿光下半年车用及
三星最新推出的Galaxy Watch 7,继续重新定义可穿戴技术的极限。这款最新型号承袭了其前身产品的成功之处,同时
2024年第二季度,在印度大选、季节性需求低迷以及部分地区极端天气等各种因素的影响下,印度智能手机市场微增1%
根据TechInsights无线智能手机战略(WSS)的最新研究,2024年Q1,拉丁美洲智能手机出货量强劲增长,同比增长21%。
Chiplet的出现标志着半导体设计和生产领域正在经历一场深刻的变革,尤其在设计成本持续攀升的背景下。
7月25日,由全球领先的专业电子机构媒体AspenCore与深圳市新一代信息产业通信集群联合主办的【2024国际AIoT生
“芯”聚正当时!第二十一届中国国际半导体博览会(IC CHINA 2024)正式定档,将于2024年11月18-20日在北京·国家
7月25日,由全球领先的专业电子机构媒体AspenCore与深圳市新一代信息产业通信集群联合主办的【2024国际AIoT生
2024年7月17日-19日,国内专业的电子元器件混合分销商凯新达科技(Kaxindakeji)应邀参加2024年中国(西部)电子信息
在7月12日下午的“芯片分销及供应链管理研讨会”分论坛上,芯片分销及供应链专家共聚一堂,共谋行业发展大计。
7月8日-10日,2024慕尼黑上海电子展(elec-tronica China)于上海新国际博览中心盛大开展,凯新达科技被邀重磅亮
2024年7月8日到10日 ,浙豪半导体(杭州)有限公司作为小华半导体的优秀合作伙伴,在2024慕尼黑上海电子展上展出了
7月25日,由全球领先的专业电子机构媒体AspenCore与深圳市新一代信息产业通信集群联合主办的【2024国际AIoT生
近日,2024 Matter 中国区开发者大会在广州隆重召开。
7月25日,由全球领先的专业电子机构媒体AspenCore与深圳市新一代信息产业通信集群联合主办的【2024国际AIoT生
7月13日,以“共筑先进封装新生态,引领路径创新大发展”为主题的第十六届集成电路封测产业链创新发展论坛(CIPA
新任副总裁将推动亚太地区的增长和创新。
点击查看更多
北京科能广告有限公司深圳分公司 版权所有
分享到微信
分享到微博
分享到QQ空间
推荐使用浏览器内置分享
分享至朋友圈