「什么是公平?」,就算是人类自己也没有统一的标准,它有时取决于语境。不论是在家里,还是在学校,教导小孩要公平是至关重要的,但说起来容易做起来难。正因为如此,我们要如何才能将社会上所说的「公平」的细微差别传递给AI系统呢?
什么是「公平」?就算是人类自己也没有统一的标准,它有时取决于语境。不论是在家里,还是在学校,教导小孩要公平至关重要,但说起来容易做起来难。正因为如此,要如何才能将社会上所说的「公平」的细微差别传递给人工智能(AI)系统呢?
IBM研究院的一组研究人员是着手解决该难题的先驱。IBM为开发人员推出了一款名为「AI Fairness 360」的工具包。作为这项工作的一部分,IBM为企业提供一种新的「基于云端的、偏差(bias)检测和消除服务」,企业可以使用它来测试和验证AI驱动的系统的行为。
在接受《EE Times》的电话采访时,IBM研究院院士Saska Mojsilovic告诉我们,科学家和AI从业者太过于关注AI的准确性。通常,人们关于AI的第一个问题是,「机器可以击败人类吗?」
但公平性呢?例如,AI中的公平无效可能会导致在医疗保健或自动驾驶车辆中造成灾难性后果,她说。
如果用于训练机器的数据集有偏差怎么办?如果AI无法解释它是如何做出决定的,那么如何才能验证其「正确性」?AI可以揭示在AI处理过程中数据是否被以某种方式操纵过吗?AI是否可以向我们保证其数据从未(包括处理前和处理后)受到攻击或篡改吗?简言之,是否存在AI自我反省?简单回答:没有。
Mojsilovic表示,如果不对AI用户、开发人员和从业者开放,AI系统就无法获得社会的信任。
一个更大的问题是如何教导机器什么是公平。Mojsilovic指出:「因为我们是科学家,我们做的第一件事就是分解“公平性”,我们需要从这着手。」他们将公平分解为AI实现中的指针、算法和偏差。
3JMesmc
减少整个AI生命周期的偏差。(来源:IBM)
IBM研究科学家Kush Varshney解释,其团队研究了AI算法和AI决策的偏差和公平性。「有个人的公平,也有团体的公平。我们研究了群体的不同属性——从性别到种族,还考虑了法律和监管问题。」最后,团队最终测量了30个不同的指标,以寻找数据集、AI模型和算法中的偏差。
这些发现已纳入IBM不久前推出的AI Fairness 360工具包中。IBM将其描述为「一个全面的指标开放原始码工具包,用于检查数据集和机器学习模型中不期望的偏差。」
虽然许多科学家已经在努力发现AI算法中的歧视(discrimination),但Mojsilovic说IBM的方法不同,它不仅包括发现偏差的算法,且还包括用于消除偏差的工具。
在基础层面,你必定会问:由计算机科学家来定义公平?这通常不是社会科学家的任务吗?意识到这种不协调,IBM明确表示Mojsilovic和Varshney都没有闭门造车,他们导入了许多学者和研究机构的资料。Varshney参加了由卡内基国际事务伦理委员会(Carnegie Council for Ethics in International Affair)主办的Uehiro-Carnegie-Oxford伦理会议;Mojsilovic则参加了由加州大学柏克莱分校法学院(UC Berkeley Law School)赞助的加州柏克莱AI工作组。
这一段时间以来,社会科学家一直在指出AI偏差问题。
威斯康辛大学麦迪逊分校(University of Wisconsin, Madison)新闻与大众传播学院教授Young Mie Kim解释:「AI歧视(或AI偏差)可能发生在它隐含或明确地强化现有不平等的社会秩序和偏见(例如,性别、种族、年龄、社会/经济状况等)时。」例子从抽样误差(例如,由于抽样方法的不适当或困难导致某些人口统计资料不充分)到机器训练(建模)中的人为偏差。Kim认为,即使在设计或建模中采用的「战略决策」也存在AI偏差,例如政治广告算法。
在她最近题为《算法机会:数位广告和政治参与的不平等(Algorithmic Opportunity: Digital Advertising and Inequality of Political Involvement)》的研究中,Kim展示了在基于算法的决策中,不平等是如何被强化。
技术小区(technical community)可能会争辩说「算法是中立的」或者可以「受过教育」(训练有素)。Kim指出:「也就是说,他们并不承认在算法开发的任何阶段都会出现偏差。」
不只是消费者害怕AI,许多计算机科学家也表达了担忧。威斯康辛大学计算机科学助理教授Aws Albarghouthi告诉《EE Times》:「从短期看,我担心越来越多地使用数据驱动的决策,这有可能传播偏见和不公正。从长远看,我担心AI在战争自动化方面的使用。」
AI无法解释其决策将带来持续焦虑。威斯康辛大学计算机科学助理教授Loris D'Antoni告诉我们:「现在,程序设计师开始将强大的机器学习算法作为程序设计工具箱中的工具。然而,这些算法复杂、难以预测、难以解释。例如,没人知道由此产生的机器学习模型究竟做了什么。」在他看来,自动化决策需要被理解和规范,并且可能以正规的方式进行。
对于流程的每个步骤,从训练数据和处理到测试与部署,IBM指出其工具包提供的解释可显示:在两种决策中、哪些因素倾向于支持哪一方;对推荐的信心,以及支持这种信心的因素。
IBM希望AI Fairness 360工具包将被广泛使用,以便开发人员可以为其做出贡献,帮助建立对AI的信任。与此同时,IBM将为企业提供其新的软件服务,旨在自动检测偏差并解释AI在需要做决策时,是如何做出决策的。它在IBM Cloud上运作,可协助企业管理AI系统。
IBM称,其在IBM Cloud上的公平性监控服务将与来自各种机器学习框架模型和AI构建环境(如Watson、 TensorFlow、SparkML、AWS SageMaker和AzureML)配合使用。「这意味着组织可以借力这些新控制以服务于企业使用的大多数流行的AI框架。」IBM也承诺提供定制服务,「还可对软件服务进行程序设计,以监控任何业务工作流程的独特决策因素,使其能够根据特定的组织用途进行定制。」
越来越意识到AI中算法公平性问题的AI研究界,对IBM的新产品表示欢迎。D'Antoni告诉我们:「看到公平检查技术进入业界并付诸实践,真的令人兴奋。」他并补充,「我认为该工具将使AI研究界更加意识到该问题的重要性。」
Albarghouthi称IBM的努力「开创了好的开始」。但是为了让AI Fairness 360工具包真正变得有效,应该使许多需要理解它的开发人员能用到它。Albarghouthi解释,该工具需要「与研究界探索的最新公平技术并共同发展。」
他并告诫:「如果研究和理解超越了目前的定义和技术,那么该工具很可能会停滞不前。」
最后,任何成全或破坏AI公平性工具包的因素都会回溯到如何定义公平这一棘手问题。Mojsilovic承认,在不同应用中,公平有不同表现。正如人类对公平有不同看法,使用者、客户和公众可能会根据情况对公平有不同评判。
当被问及AI公平性工具包的缺陷时,Albarghouthi表示,问题之一是「存在于公平性定义的选择,以及其是否足够。」毕竟,公平「在很大程度上取决于领域、其敏感性和涉及的监管。」他补充:「我确信,这些工具只有在其使用成为机器学习管道的标准部分时才有效。」
D'Antoni表达了他自己的担忧。「有很多关于公平和偏差的定义,很难将它们全部考虑在内,且其实现也并非能毕其功于一役。」换句话说,「公平定义往往是“冲突的”,存在的不可能出现的结果表明,某些公平概念不能同时诉诸实施。」
此外,还有一个事实是「机器学习小区目前尚未接受过如何了解现有的公平和偏差定义的含义以及如何使用它们,」他补充。
Kim同意。「对这种“AI偏见”问题的认识是抵抗AI歧视的第一步,也是最重要的一步。」她指出:「在人类社会中,我们提出了一些减轻不平等和歧视的政策和法规。但问题是AI仍是个秘密,与大多数情况一样,数据和建模是专有的,这使得任何公共政策或监管讨论/辩论更加困难。」
理解了定义公平性时的复杂性和权衡取舍之后,IBM研究人员认为,优先事项应该是AI实践和实施的透明度。
Mojsilovic建议由AI服务开发商和供货商完成并自愿发布供货商的符合性声明(她称之为情况说明书)。「以提高其服务的透明度并产生对它们的信任。」她将其比作「食品营养卷标」,或「器具信息表」。
业界需要有关部署在不同服务中的AI系统信息的标准。IBM敏锐地意识到这不会在一夜之间发生,正如营养标签花了很长时间才逐步发展起来一样,情况说明书的开发可能是个漫长过程。Mojsilovic提醒,业界才刚刚开始其AI之旅。
与IBM类似,研究界也在与AI公平性问题斗争,在这个悬而未决的领域,IBM的AI Fairness工具包似乎具有开创性。D'Antoni告诉我们:「我并未注意到现有用于AI模型的通用公平性检查工具。」
另一方面,他补充:「研究界提出了许多令人兴奋的原型工具。例如,Kramer等人提出的FairTest和来自我们自己团队的FairSquare。」
(参考原文:Teaching Machines ‘Fairness’ ,by Junko Yoshida)
微信扫一扫,一键转发
关注“国际电子商情” 微信公众号
国际电子商情23日讯 韩国科技巨头SK海力士日前发布的2024财年及第四季度财务报告显示,公司营业收入达66.1930万亿韩元,营业利润23.4673万亿韩元,净利润19.7969万亿韩元,营业利润率达35%,净利润率30%,均创下历史新高。这一成绩不仅超越2018年存储器市场繁荣期,还凸显了SK海力士在AI半导体存储器领域的强大竞争力。
国际电子商情讯 美东时间2025年1月20日,美国总统唐纳德·特朗普在其就职首日签署了一系列行政令,废除了前总统拜登政府的78项政策,其中包括对人工智能的监管政策。这一举动不仅引发了广泛的政治讨论,也对高科技行业和半导体产业产生了深远影响……
CSIA:共同捍卫人工智能这个全人类的智慧结晶。
国际电子商情17日讯 1月16日,中国汽车工业协会(中汽协)发布声明,坚决反对拜登政府发布的禁止使用中国智能网联汽车软硬件的规则。
在当前全球科技竞争愈发激烈的背景下,美国政府对AI芯片实施的出口管制政策成为了业界焦点。国际电子商情16日获悉,台积电董事长魏哲家在今(16)日法说会上对此政策的影响进行了回应……
国际电子商情16日讯 在全球NAND闪存市场供过于求的背景下,闪存价格已经连续四个月下跌。为此,SK海力士日前也宣布加入减产行列,这家韩国存储芯片制造商计划在2025年上半年将其NAND闪存产量减少10%……
当地时间1月15日,美国商务部BIS修订了《出口管制条例》,并把25家中国实体新增至实体清单。最新被列入实体清单的中国企业,涵盖了AI大模型公司、AI芯片设计企业以及光刻机相关企业等领域。
国际电子商情15日讯 日本政府正积极采取措施以提升其在全球芯片设计领域的竞争力,计划投入1600亿日元(约合74.37亿元人民币)支持本土芯片设计产业。这一举措标志着日本从生产环节向设计研发上游的转型,旨在缩小与中国和美国在该领域的差距……
寒武纪股市“非理性繁荣”?
2024年,中国企业纷纷抢购半导体,导致集成电路进口量显著增长。这种购买热潮的背后,是对中美科技竞争加剧的担忧,以及对美国政府可能实施更严格贸易限制、限制中国获取高端芯片的预期。
国际电子商情14日讯 在拜登政府即将离任之际,美国总统拜登通过白宫官网正式公布了针对人工智能(AI)的临时最终出口管制规则,并启动了为期120天的公众意见征询期。
国际电子商情13日讯 据媒体报道,在全球NAND闪存市场供过于求的背景下,三星电子决定将其最大的NAND生产基地——位于中国西安工厂在现有的基础上减产10%……
根据TrendForce集邦咨询最新研究报告指出,NANDFlash产业2025年持续面临需求疲弱、供给过剩的双重压力。
据TrendForce集邦咨询调查,1月21日嘉义地区芮氏规模6.4地震对邻近的晶圆代工厂、面板厂影响情况,TSMC(台积电)及
从拉各斯到内罗毕,从开罗到约翰内斯堡,线下零售渠道依然是非洲智能手机市场的中坚力量,在绝大多数地区贡献了超
荷兰特文特大学科学家开发出一种新工艺,能在室温下制造出晶体结构高度有序的半导体材料。
TrendForce集邦咨询公布了1月下旬面板报价,2025年1月下旬,电视面板价格上涨;显示器、笔记本面板价格持稳。
国家大基金队伍之一大基金三期再次出手,巨资布局人工智能(AI)。
根据TrendForce集邦咨询调查1月21日嘉义地区芮氏规模6.4地震对邻近的晶圆代工厂、面板厂影响情况,TSMC(台积电
根据Trend根据TrendForce集邦咨询最新《2025红外线感测应用市场与品牌策略》报告,目前激光雷达(LiDAR)在车用市
1月14日,美国射频厂商MACOM宣布拟投资3.45亿美元(折合人民币约25.28亿元),对其位于马萨诸塞州和北卡罗来纳州的
全球晶圆代工龙头台积电最新财报亮眼。
继美光和三星两大半导体厂商发生人事变动之后,近日,英特尔前首席架构师跳槽至高通的消息再次引发业界高度关注
根据TrendForce集邦咨询最新研究,美国2024年12月非农就业人数和制造业采购经理人指数(PMI)皆优于市场预期,美国
英飞凌位于曼谷南部沙没巴干府的新后道厂破土动工,该厂将扩大公司在亚洲的生产布局。
2024年,集成电路行业在变革与机遇中持续发展。面对全球经济的新常态、技术创新的加速以及市场需求的不断变化
雅加达,印尼- 2025年1月14日 - 全球技术解决方案供应商艾睿电子(Arrow Electronics)与印尼初创协会合作(STARFIN
无畏挑战 共创未来祥龙回首留胜景,金蛇起舞贺新程。在2025年元旦新年之际,深圳市凯新达科技有限公司(以下简
最新Wi-Fi HaLow片上系统(SoC)为物联网的性能、效率、安全性与多功能性设立新标准;
配套USB网关,轻松实现Wi-
随着与三安光电的碳化硅合资工厂落地重庆,2024年6月,意法半导体与重庆市彭水自治县同步启动了可持续发展合作
凯新达科技 自由之旅 征途同行
NVIDIA Jetson Orin™ Nano Super 开发者套件是一款尺寸小巧且性能强大的超级计算机,重新定义了小型边
德州仪器今日推出了全新的集成式汽车芯片,能够帮助各个价位车辆的驾乘人员,实现更安全、更具沉浸感的驾驶体验
广州飞虹半导体科技有限公司成立于广州越秀区,诚信经营20多年。主要研发、生产、经营:场效应管、三极管等半
近日,半导体存储品牌企业江波龙与工业和信息化部电子第五研究所(中国赛宝实验室,以下简称“电子五所”)在江波龙
深圳迈巨微电子有限公司深耕锂电池管理芯片领域,围绕电池健康和安全,电池电量计算二个核心技术能力,提供完善的
点击查看更多
北京科能广告有限公司深圳分公司 版权所有
分享到微信
分享到微博
分享到QQ空间
推荐使用浏览器内置分享
分享至朋友圈