「什么是公平?」,就算是人类自己也没有统一的标准,它有时取决于语境。不论是在家里,还是在学校,教导小孩要公平是至关重要的,但说起来容易做起来难。正因为如此,我们要如何才能将社会上所说的「公平」的细微差别传递给AI系统呢?
什么是「公平」?就算是人类自己也没有统一的标准,它有时取决于语境。不论是在家里,还是在学校,教导小孩要公平至关重要,但说起来容易做起来难。正因为如此,要如何才能将社会上所说的「公平」的细微差别传递给人工智能(AI)系统呢?
IBM研究院的一组研究人员是着手解决该难题的先驱。IBM为开发人员推出了一款名为「AI Fairness 360」的工具包。作为这项工作的一部分,IBM为企业提供一种新的「基于云端的、偏差(bias)检测和消除服务」,企业可以使用它来测试和验证AI驱动的系统的行为。
在接受《EE Times》的电话采访时,IBM研究院院士Saska Mojsilovic告诉我们,科学家和AI从业者太过于关注AI的准确性。通常,人们关于AI的第一个问题是,「机器可以击败人类吗?」
但公平性呢?例如,AI中的公平无效可能会导致在医疗保健或自动驾驶车辆中造成灾难性后果,她说。
如果用于训练机器的数据集有偏差怎么办?如果AI无法解释它是如何做出决定的,那么如何才能验证其「正确性」?AI可以揭示在AI处理过程中数据是否被以某种方式操纵过吗?AI是否可以向我们保证其数据从未(包括处理前和处理后)受到攻击或篡改吗?简言之,是否存在AI自我反省?简单回答:没有。
Mojsilovic表示,如果不对AI用户、开发人员和从业者开放,AI系统就无法获得社会的信任。
一个更大的问题是如何教导机器什么是公平。Mojsilovic指出:「因为我们是科学家,我们做的第一件事就是分解“公平性”,我们需要从这着手。」他们将公平分解为AI实现中的指针、算法和偏差。
4fFesmc
减少整个AI生命周期的偏差。(来源:IBM)
IBM研究科学家Kush Varshney解释,其团队研究了AI算法和AI决策的偏差和公平性。「有个人的公平,也有团体的公平。我们研究了群体的不同属性——从性别到种族,还考虑了法律和监管问题。」最后,团队最终测量了30个不同的指标,以寻找数据集、AI模型和算法中的偏差。
这些发现已纳入IBM不久前推出的AI Fairness 360工具包中。IBM将其描述为「一个全面的指标开放原始码工具包,用于检查数据集和机器学习模型中不期望的偏差。」
虽然许多科学家已经在努力发现AI算法中的歧视(discrimination),但Mojsilovic说IBM的方法不同,它不仅包括发现偏差的算法,且还包括用于消除偏差的工具。
在基础层面,你必定会问:由计算机科学家来定义公平?这通常不是社会科学家的任务吗?意识到这种不协调,IBM明确表示Mojsilovic和Varshney都没有闭门造车,他们导入了许多学者和研究机构的资料。Varshney参加了由卡内基国际事务伦理委员会(Carnegie Council for Ethics in International Affair)主办的Uehiro-Carnegie-Oxford伦理会议;Mojsilovic则参加了由加州大学柏克莱分校法学院(UC Berkeley Law School)赞助的加州柏克莱AI工作组。
这一段时间以来,社会科学家一直在指出AI偏差问题。
威斯康辛大学麦迪逊分校(University of Wisconsin, Madison)新闻与大众传播学院教授Young Mie Kim解释:「AI歧视(或AI偏差)可能发生在它隐含或明确地强化现有不平等的社会秩序和偏见(例如,性别、种族、年龄、社会/经济状况等)时。」例子从抽样误差(例如,由于抽样方法的不适当或困难导致某些人口统计资料不充分)到机器训练(建模)中的人为偏差。Kim认为,即使在设计或建模中采用的「战略决策」也存在AI偏差,例如政治广告算法。
在她最近题为《算法机会:数位广告和政治参与的不平等(Algorithmic Opportunity: Digital Advertising and Inequality of Political Involvement)》的研究中,Kim展示了在基于算法的决策中,不平等是如何被强化。
技术小区(technical community)可能会争辩说「算法是中立的」或者可以「受过教育」(训练有素)。Kim指出:「也就是说,他们并不承认在算法开发的任何阶段都会出现偏差。」
不只是消费者害怕AI,许多计算机科学家也表达了担忧。威斯康辛大学计算机科学助理教授Aws Albarghouthi告诉《EE Times》:「从短期看,我担心越来越多地使用数据驱动的决策,这有可能传播偏见和不公正。从长远看,我担心AI在战争自动化方面的使用。」
AI无法解释其决策将带来持续焦虑。威斯康辛大学计算机科学助理教授Loris D'Antoni告诉我们:「现在,程序设计师开始将强大的机器学习算法作为程序设计工具箱中的工具。然而,这些算法复杂、难以预测、难以解释。例如,没人知道由此产生的机器学习模型究竟做了什么。」在他看来,自动化决策需要被理解和规范,并且可能以正规的方式进行。
对于流程的每个步骤,从训练数据和处理到测试与部署,IBM指出其工具包提供的解释可显示:在两种决策中、哪些因素倾向于支持哪一方;对推荐的信心,以及支持这种信心的因素。
IBM希望AI Fairness 360工具包将被广泛使用,以便开发人员可以为其做出贡献,帮助建立对AI的信任。与此同时,IBM将为企业提供其新的软件服务,旨在自动检测偏差并解释AI在需要做决策时,是如何做出决策的。它在IBM Cloud上运作,可协助企业管理AI系统。
IBM称,其在IBM Cloud上的公平性监控服务将与来自各种机器学习框架模型和AI构建环境(如Watson、 TensorFlow、SparkML、AWS SageMaker和AzureML)配合使用。「这意味着组织可以借力这些新控制以服务于企业使用的大多数流行的AI框架。」IBM也承诺提供定制服务,「还可对软件服务进行程序设计,以监控任何业务工作流程的独特决策因素,使其能够根据特定的组织用途进行定制。」
越来越意识到AI中算法公平性问题的AI研究界,对IBM的新产品表示欢迎。D'Antoni告诉我们:「看到公平检查技术进入业界并付诸实践,真的令人兴奋。」他并补充,「我认为该工具将使AI研究界更加意识到该问题的重要性。」
Albarghouthi称IBM的努力「开创了好的开始」。但是为了让AI Fairness 360工具包真正变得有效,应该使许多需要理解它的开发人员能用到它。Albarghouthi解释,该工具需要「与研究界探索的最新公平技术并共同发展。」
他并告诫:「如果研究和理解超越了目前的定义和技术,那么该工具很可能会停滞不前。」
最后,任何成全或破坏AI公平性工具包的因素都会回溯到如何定义公平这一棘手问题。Mojsilovic承认,在不同应用中,公平有不同表现。正如人类对公平有不同看法,使用者、客户和公众可能会根据情况对公平有不同评判。
当被问及AI公平性工具包的缺陷时,Albarghouthi表示,问题之一是「存在于公平性定义的选择,以及其是否足够。」毕竟,公平「在很大程度上取决于领域、其敏感性和涉及的监管。」他补充:「我确信,这些工具只有在其使用成为机器学习管道的标准部分时才有效。」
D'Antoni表达了他自己的担忧。「有很多关于公平和偏差的定义,很难将它们全部考虑在内,且其实现也并非能毕其功于一役。」换句话说,「公平定义往往是“冲突的”,存在的不可能出现的结果表明,某些公平概念不能同时诉诸实施。」
此外,还有一个事实是「机器学习小区目前尚未接受过如何了解现有的公平和偏差定义的含义以及如何使用它们,」他补充。
Kim同意。「对这种“AI偏见”问题的认识是抵抗AI歧视的第一步,也是最重要的一步。」她指出:「在人类社会中,我们提出了一些减轻不平等和歧视的政策和法规。但问题是AI仍是个秘密,与大多数情况一样,数据和建模是专有的,这使得任何公共政策或监管讨论/辩论更加困难。」
理解了定义公平性时的复杂性和权衡取舍之后,IBM研究人员认为,优先事项应该是AI实践和实施的透明度。
Mojsilovic建议由AI服务开发商和供货商完成并自愿发布供货商的符合性声明(她称之为情况说明书)。「以提高其服务的透明度并产生对它们的信任。」她将其比作「食品营养卷标」,或「器具信息表」。
业界需要有关部署在不同服务中的AI系统信息的标准。IBM敏锐地意识到这不会在一夜之间发生,正如营养标签花了很长时间才逐步发展起来一样,情况说明书的开发可能是个漫长过程。Mojsilovic提醒,业界才刚刚开始其AI之旅。
与IBM类似,研究界也在与AI公平性问题斗争,在这个悬而未决的领域,IBM的AI Fairness工具包似乎具有开创性。D'Antoni告诉我们:「我并未注意到现有用于AI模型的通用公平性检查工具。」
另一方面,他补充:「研究界提出了许多令人兴奋的原型工具。例如,Kramer等人提出的FairTest和来自我们自己团队的FairSquare。」
(参考原文:Teaching Machines ‘Fairness’ ,by Junko Yoshida)
微信扫一扫,一键转发
关注“国际电子商情” 微信公众号
国际电子商情26日讯 日本电子制造商夏普公司近日宣布,已与软银集团达成协议,同意以1000亿日元(约合46.6亿元人民币)的价格出售其位于大阪府堺市的旧液晶面板工厂部分土地和设施。
国际电子商情24日讯 在美国即将结束拜登政府任期之际,对中国芯片产业发起了新一轮301条款贸易调查,这一行动预示着可能对来自中国的芯片征收额外关税。这些芯片广泛应用于汽车、洗衣机和电信设备等日常用品,对全球供应链具有深远影响……
美国商务部长认为,在半导体竞赛中,阻碍中国的发展是“徒劳的”。美国半导体产业要想保持领先地位,应更多地关注国内创新投资……
国际电子商情19日讯 深圳市工业和信息化局近日发布了《深圳市打造人工智能先锋城市的若干措施》,标志着深圳在人工智能领域的发展迈入新阶段……
预计2024年全球数据中心市场规模为2427.2亿美元。
在全球AI技术竞赛加剧的背景下,美国政府日前宣布了一项新政策,指定谷歌、微软等主要云服务提供商为全球AI芯片分销的“守门人”。
国际电子商情13日讯 苹果公司计划在2025年推出自研芯片Proxima,集成蓝牙和Wi-Fi功能,这不仅是减少对高通依赖的战略举措,也是苹果技术自主化布局的重要一步……
国际电子商情11日讯,美国商务部工业与安全局(BIS)在当地时间12月10日更新出口管制清单(Entity List),将包括中国在内的8家实体列入其中。
汽车制造商纷纷致力于将更先进的人工智能(AI)技术融入汽车之中,这一动向在汽车产业正处于技术转型升级的关键时期显得尤为恰当。
国际电子商情讯,12月10日上午,英伟达方面针对9日晚间被立案调查的新闻做出回应……
近日,因英伟达公司涉嫌违反《中华人民共和国反垄断法》及《市场监管总局关于附加限制性条件批准英伟达公司收购迈络思科技有限公司股权案反垄断审查决定的公告》(市场监管总局公告〔2020〕第16号),市场监管总局依法对英伟达公司开展立案调查。
国际电子商情9日讯 近日,一则关于海信集团可能面临高达30%的裁员比例,涉及员工人数可能达到3万人的消息在社交媒体上广泛传播,引起业界的广泛关注。若消息属实,这将是近年来全球科技企业中最大规模的裁员之一。
2024年第三季度,中国大陆云基础设施服务支出达到102亿美元,同比增长11%,重回两位数增长。
2025年半导体制造市场五大展望
12月20日,上海市政府发布公告,华虹集团党委书记、董事长张素心正式离任,由上海联和投资有限公司党委书记、董事
欧盟委员会发布《2024年欧盟工业研发投资记分牌》(The2024EUIndustrialR&DInvestmentScoreboard),谷歌母公司
随着全球半导体产业竞争的加剧,欧洲逐渐意识到自身在芯片制造和封测领域的短板,纷纷出台措施以提升产业链自主
2024年,半导体行业已经出现分化,消费电子、汽车和工业市场表现持续疲软,而人工智能领域的发展继续推动GPU和高
近日,芯片制造领域传来重大消息:Rapidus开始安装ASMLEUV光刻机,成为首家接收EUV光刻设备的日本半导体公司。
品牌战略管理咨询公司英图博略(Interbrand)日前发布《2024中国最佳品牌》榜单。
为抢抓半导体与集成电路产业重大发展机遇,深圳市龙华区政府印发了《关于支持半导体与集成电路产业发展若干措
这标志着非美国公司首次在服务器市场排名中位居榜首。
根据TrendForce集邦咨询最新调查,2024年VR与MR头戴装置出货量约为960万台,年增8.8%。
据TrendForce集邦咨询最新OLED技术及市场发展分析报告,由于陆系笔记型电脑品牌大规模采购,预计2024年OLED笔电
可实现电信、数据中心和专业音频/视频设备市场的无缝集成。
最近,Rambus推出了业界首个HBM4控制器IP,这一里程碑式的产品进一步巩固了公司在内存接口技术的前沿地位。该控
喆塔科技与国家集成电路创新中心共建“高性能集成电路数智化联合工程中心”签约揭牌仪式圆满举行
专为下一代智能可穿戴设备、无线耳机、医疗设备和物联网应用而设计。
我国的高质量发展,源自于国家政策与市场需求的双方面驱动。顺应“新质生产力”建设的巨大需求,集成电路产业正
联想手写笔Pro搭载了汇顶科技新一代的主动笔驱动芯片,为消费者带来更流畅自然的书写体验。
在2024德国慕尼黑国际电子元器件博览会上,创实技术展示了包括用于助听器、电源管理芯片等领域的高性能电子元
泰凌微电子获蓝牙 6.0 认证,助力蓝牙技术拓展与应用升级
泰凌微电子:国内首家获得Zigbee PRO R23 + Zigbee Direct认证的芯片公司
2024年11月20日,由全球高科技产业研究机构TrendForce集邦咨询以及旗下全球半导体观察主办的“MTS2025存储产
此次合作旨在大幅提升成本、能效、驾驶体验和车辆续航里程。
据TrendForce集邦咨询分析,截至2023年,全球传统乘用车中LED头灯的普及率已达72%,而在电动汽车领域,这一比率更是
点击查看更多
北京科能广告有限公司深圳分公司 版权所有
分享到微信
分享到微博
分享到QQ空间
推荐使用浏览器内置分享
分享至朋友圈