着眼于物联网(Internet of Things,IoT)的发展前景,业界正致力于研究从无线充电到毫米波雷达等一切应用的各种新兴无线技术;根据比利时微电子研究中心(IMEC)的研究人员们表示,目前的最新任务就涉及了其中的几项连网标准。
新的802.11ah标准用于1km范围内执行超过900MHz的低功率 Wi-Fi ,是最被看好的新式无线电。“我们认为这项新标准是 IoT 应用于具有 Wi-Fi 路由器的智能家庭与建筑物时的最佳选择,”在Holst Center主导一项超低功耗无线研究计划的负责人Kathleen Philips表示。Holst Center是IMEC在荷兰的合作伙伴。
家庭建筑物自动化市场一直存在各种彼此之间不相 容的无线协议,包括 EnOcean 、 6LoWPAN 、 WirelessHART 、 ANT 与 RF4CE 等,大多都要求采用各家自有的网关。Philips指出,“对于 Wi-Fi 定义的扩展可望为这些市场带来催化剂,因为它将采用现有的基础架构进行通讯,解决互操作性的问题。”
Philips的团队正在设计一款新的.11ah芯片,目标是能够以12mW峰值功耗与5mW接收器功耗,达到在1km范围内传送100kbit/s的距离。“由于这有希望成为新的大众市场,供货商将可在成本、电池寿命、耐用性和距离方面进行差异化,”她说。
Holst也正致力于研究距离可达5-10公尺的远场 RF 无线充电技术,期望用于取代需要线圈紧密耦合的感应充电技术。新的远场 RF 无线充电技术是专门针对无法轻易移动以配合感应技术、也无法取得其他能源的 IoT 设备而设计。
“以3W等效全向辐射功率(EIRP)在915MHz频段传输,我们可以从最远达5公尺以外的能量来源连续采集到30mW,”Phillips描述她的团队目前的工作进展。
此 外,Holst的研究团队也正着手开发一种功耗为5.1mW的无线个人局域网络,它具有-95dBm的灵敏度,可支持 Bluetooth 4.0 、 IEEE 802.15.4 与 Zigbee 协议。此外,该团队也致力于一种专为智能建筑打造的无线技术,该技术在接收模式时的接收功耗为4mW,具有-120dBM的灵敏度,以及支持多种协议。
研究人员们看好毫米波无线技术将带来广泛的大量应用。
在高阶领域,IMEC的另一组研究人员们看好60-90GHz亳米波频谱将催生许多大量市场应用,从汽车雷达到5G无线链路。
IMEC在今年初发布其于79GHz雷达收发器的研究进展,采用28nm CMOS制程的79GHz雷达收发器当时可实现超过10%的效率。如今,该团队正测量最新的工作进展,期望将该收发器整合于2平方厘米的相位数组天线SoC中。
IMEC无线研究小组科学总监Liesbet Van der Perre表示,这种毫米波设计将从大规模 MIMO 天线的新进展中受益。她预期有2020个基地台可利用该技术以1.17Gbit/s
提供回程网络连接,而功耗约90W。相较于目前的基地台在270Mbit/s时的功耗约700W,这一技术已大幅进展。
IMEC正主导一项与欧盟(EU)合作的研究计划,旨在为大规模 MIMO 所用的算法、DSP与射频开发核心技术。“它并不是典型的MIMO,而是一种新的机制,而且十分具有破坏性,”她说。
另外,Van der Perre还讨论了针对 5G 可重配置10Gbit/s射频模块的初期研究工作。这项 5G 技术将整合过去在基频、收发器以及频率可调的前端模块等方面的研究成果。
该小组的工作重点在于 CMOS ——她声称 CMOS 可望在20nm制程节点时达到毫米波的性能。
IMEC认为,CMOS将在20nm时达到SiGe毫米波性能。
本文授权编译自EE Times,版权所有,谢绝转载
编译:Susan Hong
参考英文原文:Radios Give IoT New Channels,by Rick Merritt
相关阅读:
• TI 的片上互联网可为任何设备增添 Wi-Fi(R) 功能
• 物联网将由垂直网络向水平网络整合?
• 左手Aster右手LinkIt,联发科进军可穿戴与物联网pUxesmc
{pagination}
Radios Give IoT New Channels
WiFi dives down to 900 MHz
Rick Merritt
BRUSSELS — A basketful of new radios for everything from wireless charging to millimeter-wave radar are in the works for the Internet of Things, according to researchers at Imec who described their work on several of them.
The emerging 802.11ah specification for running low-power WiFi over 900 MHz at distances up to a kilometer is one of the most promising new radios. "We believe this new standard is a very strong candidate for IoT applications in smart homes and buildings where a WiFi router is nearby," says Kathleen Philips, who heads an ultra-low-power wireless research program at the Holst Center, a partner with Imec in the Netherlands.
Home and building automation has been a fragmented market served by a host of incompatible wireless protocols including EnOcean, 6LowPAN, WirelessHART, ANT, and RF4CE -- most requiring their own gateways. "The definition of this WiFi extension can be a major catalyst for these markets, because it will communicate with already available infrastructure, resolving interoperability issues," Philips told EE Times.
Her group is designing an 11ah chip now that aims to send 100 kbit/s distances of up to a kilometer with a peak transmit power consumption of 12 milliwatts and 5 mW for the receiver. "Since this is expected to be one of the new mass markets, vendors will differentiate on cost, battery life, robustness, and distance," she says.
Holst also is researching far-field RF wireless charging over a distance of five to 10 meters as an alternative to inductive approaches that require close alignment of coils. The approach is geared for IoT devices that cannot be easily moved to align with an inductive technique and do not have access to other energy sources.
"With a 3W EIRP source transmitting at 915 MHz, we can harvest 30 microwatts on a continuous basis from up to five meters away from the source," Phillips says, describing her group's current work.
In other efforts, the Holst team is developing a radio for personal area networks that consumes 5.1 mW, has a -95 dBm sensitivity and supports Bluetooth 4.0, IEEE 802.15.4, and Zigbee protocols. It is also working on a radio for smart buildings that consumes 4 mW in receive mode, has a -120 dBm sensitivity, and supports multiple protocols.
Researchers see a broad set of high-volume apps emerging for millimeter wave radios.
At the high end of the spectrum, Imec is among a growing set of researchers that see many mass-market applications emerging in the millimeter wave spectrum from 60 to 90 GHz, spanning automotive radar to 5G cellular links.
Imec reported earlier this year on its work on a 79 GHz radar transceiver in 28 nm CMOS that has more than 10% efficiency. It is now measuring results of its work, aiming to integrate the transceiver into a cm2 SoC with a phased array antenna.
Such millimeter wave designs will benefit from emerging work in massive MIMO antennas, says Liesbet Van der Perre, a group science director in wireless research at Imec. She predicts 2020 base stations could use the technique to deliver backhaul connections at 1.17 Gbit/s at power consumption levels of 90 W. That's up from 270 Mbit/s for today's base stations consuming 700 W, she said.
Imec is leading a research collaboration in the European Union that aims to develop core technology for algorithms, DSPs and radios for massive MIMO. "It's not classic MIMO, it's a new scheme and very disruptive," she told us.
Separately, Van der Perre discussed early work on a reconfigurable 10 Gbit/s radio module for 5G, targeting the 16 nm node. It would integrate past work in basebands, transceivers, and frequency-flexible front-end modules.
The group's work is focused on CMOS, which she claims is catching up to the millimeter wave capabilities of silicon germanium at the 20 nm node.
CMOS will catch up with SiGe's millimeter wave capabilities at 20 nm, Imec believes.
责编:Quentin